
IJSRST184148 | Received:05 Jan 2018 | Accepted :16 Jan 2018 | January-February-2018 [(4)2: 134-138]

© 2018 IJSRST | Volume 4 | Issue 2 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Scienceand Technology

134

On Traffic-Aware Partition and Aggregation in Mapreducefor Big Data

Applications
1Shaik Inthiyaz , 2S. G. Nawaz, 3Dr. R. Ramachandra

1M.Tech Scholar, Department of Computer Science & Engineering, SKD Engineering College, Gooty,

Anantapur, Andhra Pradesh, India
2M.Tech, HOD of CSE Department, SKD Engineering College, Gooty, Anantapur, Andhra Pradesh, India

3Principal & Professor, Department of Computer Science & Engineering, SKD Engineering College, Gooty,

Anantapur, Andhra Pradesh, India

ABSTRACT

The MapReduce programming model simplifies large-scale data processing on commodity cluster by exploiting

parallel map tasks and reduce tasks. Although many efforts have been made to improve the performance of

MapReduce jobs, they ignore the network traffic generated in the shuffle phase, which plays a critical role in

performance enhancement. Traditionally, a hash function is used to partition intermediate data among reduce

tasks, which, however, is not traffic-efficient because network topology and data size associated with each key

are not taken into consideration. In this paper, we study to reduce network traffic cost for a MapReduce job by

designing a novel intermediate data partition scheme. Furthermore, we jointly consider the aggregator

placement problem, where each aggregator can reduce merged traffic from multiple map tasks. A

decomposition-based distributed algorithm is proposed to deal with the large-scale optimization problem for

big data application and an online algorithm is also designed to adjust data partition and aggregation in a

dynamic manner. Finally, extensive simulation results demonstrate that our proposals can significantly reduce

network traffic cost under both offline and online cases.

Keywords:Map Reduce, Hadoop, Bioinformatics, Cyber Security, Machine Learning, Big Data, Trafficcost

I. INTRODUCTION

Map Reduce has emerged as the most popular

computing framework for big data processing due to

its simple programming model and automatic

managementof parallel execution. Map Reduce and its

open source implementation Hadoop have been

adopted by leading companies, such as Yahoo!, Google

and Face book, for various big data applications, such

as machine learning, bioinformatics and cyber

security.

Map Reduce divides a computation into two main

phases, namely map and reduce, which in turn are

carried out by several map tasks and reduce tasks,

respectively. In the map phase, map tasks are

launched in parallel to convert the original input splits

into intermediate data in a form of key/value pairs.

These key/value pairs are stored on local machine and

organized into multiple data partitions, one per reduce

task. In thereduce phase, each reduce task fetches its

own share of data partitions from all map tasks to

generate the final result. There is a shuffle step

between map and reduce phase. In this step, the data

produced by the map phase are ordered, partitioned

and transferred to the appropriate machines executing

the reduce phase.

The resulting network traffic pattern from all map

tasks to all reduce tasks can cause a great volume of

International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com)

135

net work traffic, imposing a serious constraint on the

efficiency of data analytic applications. For example,

with tens of thousands of machines, data shuffling

accounts for58.6% of the cross-pod traffic and

amounts to over 200 petabytes in total in the analysis

of SCOPE jobs. For shuffle-heavy Map Reduce tasks,

the high traffic could incur considerable performance

overhead up to30-40%as shown in. By default,

intermediate data are shuffled according to a hash

function in Hadoop, which would lead to large

network traffic because it ignores network topology

and data size associated with each key. As shown in

Fig.1, consider a toy example with two map tasks and

two reduce tasks, where intermediate

dataofthreekeysK1, K2, and K3 are denoted by

rectangle bars under each machine. If the hash

function assigns data of K1 andK3 to reducer 1, and

K2 to reducer 2, a large amount of traffic will go

through the top switch. To tackle this problem

incurred by the traffic-oblivious partition scheme,

take into account of both task locations and data size

associated with each key in this paper. By assigning

keys with larger data size to reduce tasks closer to map

tasks, network traffic can be significantly reduced. In

the same example above, if assign K1and K3 to

reducer 2, and K2 to reducer1,as shown in

The data transferred through the top switch will be

significantly reduced.

To further reduce network traffic within a Map

Reducejob, consider to aggregate data with the same

keys before sending them to remote reduce tasks.

Although a similar function, called combiner, has

been already adopted by Hadoop, it operates

immediately after a map task solely for its generated

data, failing to exploit the data aggregation

opportunities among multiple tasks on different

machines. As an example shown in Fig. 2(a), in the

traditional scheme, two map tasks individually send

data of key K1 to the reduce task. If aggregate the

data of the same keys before sending them over the

top switch, as shown in Fig. 2(b), the network traffic

will be reduced. Jointly consider data partition and

aggregation for a Map Reduce job with an objective

that is to minimize the total network traffic. Finally,

extensive simulation results demonstrate that our

proposals can significantly reduce network traffic cost

in both offline and online cases.

SYSTEM ANALYSIS

 Domain Analysis

 Requirement Analysis

 Functional Requirements

 Non-Functional Requirements

International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com)

136

II. EXISTING SYSTEM

Intermediate data are shuffled according to a hash

function in Hadoop, which would lead to large

network traffic because it ignores network topology

and data size associated with each key. To tackle this

problem incurred by the traffic-oblivious partition

scheme, take into account of both task locations and

data size associated with each key in this paper. By

assigning keys with larger data size to reduce tasks

closer to map tasks, network traffic can be

significantly reduced.

To further reduce network traffic within a Map

Reduce job, consider to aggregate data with the same

keys before sending them to remote reduce tasks.

Although a similar function, called combiner, has

been already adopted by Hadoop, it operates

immediately after a map task solely for its generated

data, failing to exploit the data aggregation

opportunities among multiple tasks on different

machines.

III. PROPOSED SYSTEM

In the proposed work data partition and aggregation

for a Map Reduce job are consider with an objective

that is to minimize the total network traffic. In

particular, propose a distributed algorithm for big data

applications by decomposing the original large-scale

problem into several sub problems that can be solved

in parallel. Moreover, an online algorithm is designed

to deal with the data partition and aggregation in a

dynamic manner. Finally, extensive simulation results

demonstrate that our proposals can significantly

reduce network traffic cost in both offline and online

cases.

IV. TEST CASES

TestCase

Id

Test Case

Name

Test Case Desc Test Steps Test Case

Status Step Expected Actual

Define

Reducer

s

 01

Reducer

location

details

It defines the reducers

particular location by

providing latitude &

longitude values

If we doesn’t

provide

latitude,

longitude

values

Location

details will not

be saved

Reducers

details will be

saved

successfully

Fail

Reducer

1 &2

 02

Run reducers Start the reducer

nodes ,and all details

will be updated at

reducer node

If we not run

the

application

Reducer don’t

know the

updated details

Reducer node

will be started

Fail

Upload

 03

Upload the

input data

Data will be uploaded

from shuffle phase

If we can’t

upload the

data

We can’t

reduce the

network traffic

Input data

loaded

successfully

Fail

Start

Mapred

uce

aggregat

ion

04

Aggregation

using

Mapreduce

It aggregates all the

partitioned data

If we not

start the

aggregation

We can’t

reduce the

network traffic

After

processing the

aggregate data,

it displays the

count result.

Fail

International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com)

137

Graph

05

Network

traffic cost

graph

Displays the graph

between processing

time & Technique

If we can’t

do any

aggragation

Nothing will

be displayed

Graph will be

displayed using

aggregated/no

aggregated data

Fail

Failure Test Case

TestCase

Id

Test Case

Name

Test Case Desc Test Steps Test Case

Status Step Expected Actual

Define

Reducers

 01

Reducer

location

details

It defines the

reducers

particular location

by providing

latitude &

longitude values

If we doesn’t

provide

latitude,

longitude

values

Location

details will

not be

saved

Reducers details

will be saved

successfully

Pass

Reducer 1

&2

 02

Run reducers Start the reducer

nodes ,and all

details will be

updated at

reducer node

If we not run

the

application

Reducer

don’t know

the updated

details

Reducer node will

be started

Pass

Upload

 03

Upload the

input data

Data will be

uploaded from

shuffle phase

If we can’t

upload the

data

We can’t

reduce the

network

traffic

Input data loaded

successfully

Pass

Start

Mapreduc

e

aggregatio

n

04

Aggregation

using

Mapreduce

It aggregates all

the partitioned

data

If we not start

the

aggregation

We can’t

reduce the

network

traffic

After processing

the aggregate data,

it displays the

count result.

Pass

Graph

05

Network

traffic cost

graph

Displays the

graph between

processing time &

Technique

If we can’t do

any

aggragation

Nothing

will be

displayed

Graph will be

displayed using

aggregated/no

aggregated data

Pass

V. CONCLUSION

Optimization of intermediate data partition and

aggregation in MapReducetominimize network traffic

cost for big data applications. Propose a three-layer

model for this problem and formulate it as a mixed-

integer nonlinear problem, which isthen transferred

into a linear form that can be solved by mathematical

tools. To deal with the large-scale formulation due to

big data, we design distributed algorithm to solve the

problem on multiple machines. Furthermore, extend

our algorithm to handle the MapReduce job inan

online manner when some system parameters are

notgiven. Finally, we conduct extensive simulations to

evaluate our proposed algorithm under both offline

casesand online cases. The simulation results

demonstratethat our proposals can effectively reduce

network trafficcost under various network settings.

International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com)

138

VI. FUTURE ENHANCEMENT

Furthermore,to extend our algorithm to handle the

MapReduce job inan online manner when some

system parameters are notgiven. Finally, conduct

extensive simulations to evaluate our proposed

algorithm under both offline casesand online cases.

The simulation results demonstratethat our proposals

can effectively reduce network trafficcost under

various network settings.

VII. REFERENCES

[1]. J. Dean and S. Ghemawat, "Mapreduce: simplified

data processing on large clusters," Communications

of the ACM, vol. 51, no. 1,pp. 107-113, 2008.

[2]. W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang,

"Map taskscheduling in mapreduce with data

locality: Throughput andheavy-traffic optimality,"

in INFOCOM, 2013 Proceedings IEEE.IEEE, 2013,

pp. 1609-1617.

[3]. F. Chen, M. Kodialam, and T. Lakshman, "Joint

scheduling of processing and shuffle phases in

mapreduce systems," in INFOCOM,2012

Proceedings IEEE. IEEE, 2012, pp. 1143-1151.

[4]. Y. Wang, W. Wang, C. Ma, and D. Meng, "Zput: A

speedy datauploading approach for the hadoop

distributed file system," inCluster Computing

(CLUSTER), 2013 IEEE International

Conferenceon. IEEE, 2013, pp. 1-5.

[5]. T. White, Hadoop: the definitive guide: the

definitive guide. " O’Reilly Media, Inc.", 2009.

[6]. S. Chen and S. W. Schlosser, "Map-reduce meets

wider varietiesof applications," Intel Research

Pittsburgh, Tech. Rep. IRP-TR-08-05,2008.

[7]. J. Rosen, N. Polyzotis, V. Borkar, Y. Bu, M. J.

Carey, M. Weimer,T. Condie, and R.

Ramakrishnan, "Iterative mapreduce for largescale

machine learning," arXiv preprint arXiv:1303.3517,

2013.

[8]. S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung,

and R. S.Schreiber, "Presto: distributed machine

learning and graph processing with sparse

matrices," in Proceedings of the 8th ACMEuropean

Conference on Computer Systems. ACM,

2013,pp.197-210.

[9]. A. Matsunaga, M. Tsugawa, and J. Fortes,

"Cloudblast: Combining mapreduce and

virtualization on distributed resources

forbioinformatics applications," in eScience, 2008.

eScience’08. IEEEFourth International Conference

on. IEEE, 2008, pp. 222-229.

[10]. J. Wang, D. Crawl, I. Altintas, K. Tzoumas, and V.

Markl, "Comparison of distributed data-

parallelization patterns for big dataanalysis: A

bioinformatics case study," in Proceedings of the

FourthInternational Workshop on Data Intensive

Computing in the Clouds(DataCloud), 2013.

[11]. R. Liao, Y. Zhang, J. Guan, and S. Zhou,

"Cloudnmf: A mapreduce implementation of

nonnegative matrix factorization for largescale

biological datasets," Genomics, proteomics &

bioinformatics,vol. 12, no. 1, pp. 48-51, 2014.

